Tornado climatology and prediction

The United States has the most tornadoes of any country, about four times more than estimated in all of Europe, not including waterspouts.[45] This is mostly due to the unique geography of the continent. North America is a relatively large continent that extends from the tropical south into arctic areas, and has no major east-west mountain range to block air flow between these two areas. In the middle latitudes, where most tornadoes of the world occur, the Rocky Mountains block moisture and atmospheric flow, allowing drier air at mid-levels of the troposphere, and causing cyclogenesis downstream to the east of the mountains. The desert Southwest also feeds drier air and the dry line, while the Gulf of Mexico fuels abundant low-level moisture. This unique topography allows for many collisions of warm and cold air, the conditions that breed strong, long-lived storms many times a year. A large portion of these tornadoes form in an area of the central United States known as Tornado Alley.[4] This area extends into Canada, particularly Ontario and the Prairie Provinces. Strong tornadoes also occasionally occur in northern Mexico.

The United States averages about 1,200 tornadoes per year. The Netherlands has the highest average number of recorded tornadoes per area of any country (more than 20, or 0.0013 per sq mi (0.00048 per km²), annually), followed by the UK (around 33, or 0.00035 per sq mi (0.00013 per km²), per year), but most are small and cause minor damage. In absolute number of events, ignoring area, the UK experiences more tornadoes than any other European country, excluding waterspouts.[45]

Bangladesh and surrounding areas of eastern India suffer from tornadoes of equal severity to those in the US, and occurring more frequently than anywhere else in the world, but such events are under-reported due to the scarcity of media coverage in third-world countries. Tornados kill about 179 people per year in Bangladesh, many more than in the US. This is due to high population density, poor quality of construction, lack of tornado safety knowledge, and other factors.[46] Other areas of the world that have frequent tornadoes include South Africa, parts of Argentina, Paraguay, and southern Brazil, as well as portions of Europe, Australia and New Zealand, and far eastern Asia.[5]

Tornadoes are most common in spring and least common in winter.[8] Since autumn and spring are transitional periods (warm to cool and vice versa) there are more chances of cooler air meeting with warmer air, resulting in thunderstorms. Tornadoes can also be caused by landfalling tropical cyclones, which tend to occur in the late summer and autumn. But favorable conditions can occur at any time of the year.

Tornado occurrence is highly dependent on the time of day, because of solar heating.[47] Worldwide, most tornadoes occur in the late afternoon, between 3 and 7 pm local time, with a peak near 5 pm.[48][49][50][51][52] However, destructive tornadoes can occur at any time of day. The Gainesville Tornado of 1936, one of the deadliest tornadoes in history, occurred at 8:30 am local time.[8]

Associations to climate and climate change

Associations to various climate and environmental trends exist. For example, an increase in the sea surface temperature of source region (e.g. Gulf of Mexico and Mediterranean Sea) increases moisture content, potentially fueling an increase in severe weather and tornado activity, particularly in the cool season.[53]

Although insufficient support exists to make conclusions, evidence does suggest that the Southern Oscillation is weakly correlated with some changes in tornado activity; which vary by season and region as well as whether the ENSO phase is that of El Niño or La Niña.[54]

Climatic shifts affect tornadoes via teleconnections in shifting the jet stream and the larger weather patterns. The climate-tornado link is confounded by the forces affecting larger patterns and by the local, nuanced nature of tornadoes. Although it is reasonable that the climate change phenomenon of global warming may affect tornado activity, any such effect is not yet identifiable due to the complexity, local nature of the storms, and database quality issues. Any effect would vary by region.[55]


Prediction
Probabilistic maps issued by the Storm Prediction Center during the heart of the April 6-8, 2006 Tornado Outbreak. The top map indicates the risk of general severe weather (including large hail, damaging winds, and tornadoes), while the bottom map specifically shows the percent risk of a tornado forming within 25 miles (40 km) of any point within the enclosed area. The hashed area on the bottom map indicates a 10% or greater risk of an F2 or stronger tornado forming within 25 miles (40 km) of a point.
Probabilistic maps issued by the Storm Prediction Center during the heart of the April 6-8, 2006 Tornado Outbreak. The top map indicates the risk of general severe weather (including large hail, damaging winds, and tornadoes), while the bottom map specifically shows the percent risk of a tornado forming within 25 miles (40 km) of any point within the enclosed area. The hashed area on the bottom map indicates a 10% or greater risk of an F2 or stronger tornado forming within 25 miles (40 km) of a point.

Weather forecasting is handled regionally by many national and international agencies. For the most part, they are also in charge of the prediction of conditions conducive to tornado development.

Australia

Severe thunderstorm warnings are provided to Australia by the Bureau of Meteorology. The country is in the middle of an upgrade to Doppler radar systems, with their first benchmark of installing six new radars reached in July 2006.[56]

Europe

The European Union founded a project in 2002 called the European Severe Storms virtual Laboratory, or ESSL, which is meant to fully document tornado occurrence across the continent. The ESTOFEX (European Storm Forecast Experiment) arm of the project also issues one day forecasts for severe weather likelihood.[57] In Germany, Austria, and Switzerland, an organization known as TorDACH collects information regarding tornadoes, waterspouts, and downbursts from Germany, Austria, and Switzerland. A secondary goal is collect all severe weather information. This project is meant to fully document severe weather activity in these three countries.[58]

United Kingdom

In the United Kingdom, the Tornado and Storm Research Organisation (TORRO) makes experimental predictions. The Met Office provides official forecasts for the UK.

United States

In the United States, generalized severe weather predictions are issued by the Storm Prediction Center, based in Norman, Oklahoma. For the next one, two, and three days, respectively, they will issue categorical and probabilistic forecasts of severe weather, including tornadoes. There is also a more general forecast issued for the four to eight day period. Just prior to the expected onset of an organized severe weather threat, SPC issues severe thunderstorm and tornado watches, in collaboration with local National Weather Service offices. Warnings are issued by local National Weather Service offices when a severe thunderstorm or tornado is occurring or imminent.

Other areas

In Japan, predictions and study of tornadoes in Japan are handled by the Japan Meteorological Agency. In Canada, weather forecasts and warnings, including tornadoes, are produced by the Meteorological Service of Canada, a division of Environment Canada.

Extracted from Wikipedia

No comments: